HOME WORK I, PROBABILITY I

1. Prove that an intersection of sigma-algebras \mathcal{F}_{1} and \mathcal{F}_{2} over Ω is a sigma-algebra.
2. Prove that Borel sigma-algebra on the real line is generated by the collection of sets

$$
\{(-\infty, a), a \in \mathbb{R}\}
$$

Hint. Show that every open set on the real line can be represented as a disjoint union of open intervals.
3. Show that product of Borel sigma-algebras on \mathbb{R} is the Borel sigma-algebra on \mathbb{R}^{2}. Hint. Dyadic lattice on \mathbb{R}^{2} is the collection of squares $\left[\frac{k}{2^{n}}, \frac{k+1}{2^{n}}\right] \times\left[\frac{m}{2^{n}}, \frac{m+1}{2^{n}}\right]$, where n runs over non-negative integers, and k and m run over all integers. Prove that every open set in \mathbb{R}^{2} can be represented as a countable union of dyadic squares.
4. The unit disc T in \mathbb{R}^{2} is defined as

$$
\mathrm{T}=\left\{(x, y) \in \mathbb{R}^{2}: x^{2}+y^{2} \leq 1\right\}
$$

Drop a vertical needle of length 1 onto the unit disc T randomly, so that the center of the needle is distributed uniformly over T . Find the probability that the needle is fully contained in T.
5. Estimate (from above and from below) the probability that the standard Gaussian random variable takes values in $[-1,5] \cup(10,13)$.
6. Prove that if X and Y are random variables on Ω with fixed sigma-algebra \mathcal{F}, then $X \cdot Y$, and $\max (X, Y)$ are both random variables as well.
7. Let X be standard Gaussian random variable. Find the density of X^{2}.
8. Consider a measurable space $(\Omega, \mathcal{F}, \mu)$. Prove that for any integrable functions $f, g: \Omega \rightarrow \mathbb{R}$,
a) $\int(a f+b g) d \mu=a \int f d \mu+b \int g d \mu$, for any $a, b \in \mathbb{R}$;
b) $\mathrm{f} \leq \mathrm{g}$ a.e. $\Longrightarrow \int \mathrm{fd} \mu \leq \int \mathrm{gd} \mu$;
c) If $f \geq 0$ a.e. and $\int f d \mu=0$, then $f=0$ a.e.
9. Prove that if $\mathrm{f}:[0,1] \rightarrow \mathbb{R}$ is Riemann-integrable and Borel measurable, then its Riemann integral coincides with its Lebesgue integral.
10^{*}. Prove that

$$
\lim _{n \rightarrow \infty} \int g(x) \cos (n x) d x=0
$$

$11^{* * *}$. Let $\phi(x)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{x} e^{-\frac{t^{2}}{2}} d t$. Prove that for all $a, b, c, d \in \mathbb{R}$ and for every $\lambda \in[0,1]$, one has

$$
\phi^{-1}\left(\frac{1}{\sqrt{2 \pi}} \int_{\lambda a+(1-\lambda) c}^{\lambda b+(1-\lambda) d} e^{-\frac{t^{2}}{2}} d t\right) \geq \lambda \phi^{-1}\left(\frac{1}{\sqrt{2 \pi}} \int_{a}^{b} e^{-\frac{t^{2}}{2}} d t\right)+(1-\lambda) \phi^{-1}\left(\frac{1}{\sqrt{2 \pi}} \int_{c}^{d} e^{-\frac{t^{2}}{2}} d t\right)
$$

Remark. In particular, any progress in the case $a=-b, c=-d, c, d>0$ will be highly appreciated.

